
Revolutionizing Tree Management via Intelligent
Spatial Techniques

Yiqun Xie, Shashi Shekhar
{xiexx347,shekhar}@umn.edu
Dept. of Computer Sci. and Eng.

University of Minnesota – Twin Cities

Richard Feiock
rfeiock@fsu.edu

Askew Sch. of Public Admin. & Policy
Florida State University

Joseph Knight
jknight@umn.edu

Dept. of Forest Resources
University of Minnesota – Twin Cities

ABSTRACT
Tree management is becoming a big issue in a variety of societal
domains. In recent years, historic wildfires and blackouts caused by
failures in tree management have increased in both quantity and
severity, resulting in many deaths and financial loses in the tens
of billions of dollars. Many communities are also suffering from
massive tree loss (e.g., in the millions) that affects the health and
well-being of citizens. These problems are likely to worsen due to
climate change, aging infrastructure and population growth. Tree
management needs a revolution to deal with these urgent problems.
This opens up new challenges and opportunities for the spatial com-
munity. This paper presents some of the open research problems
from the perspectives of individual tree mapping and characteriza-
tion as well as decision making and in-field intervention.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems;Datamin-
ing; • Computing methodologies → Artificial intelligence.
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1 INTRODUCTION
In both urban and rural areas, trees play a huge role in the everyday
life of humans. Knowing the locations of individual trees, their geo-
metric characteristics (e.g., heights, canopy sizes), species and status
(e.g., health) is critical to the resilience of many infrastructures (e.g.,
energy) and citizens’ safety and well-being.

1.1 Societal Significance and Urgency
1.1.1 Resilience of Energy Infrastructure. Trees near electricity
power lines pose major threats to energy infrastructure security,
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especially in the face of climate change. The core challenge faced by
most communities under these threats is the lack of awareness of
the location, type and wind resistance of trees relative to power line
infrastructure in cities. For example, the 2003 Northeast Blackout,
which was caused by unmanaged trees falling on power lines and
subsequent cascade, affected over 50 million people. Such threats
will likely worsen in the future due to climate change effects, aging
infrastructure, and rapid population growth in cities.

In general, fallen or untrimmed trees are responsible for a signif-
icant portion of power outages (e.g., about 67% for DTE Energy [1]).
High winds from severe storms can knock out trees, resulting in
snapped power lines and blackouts that shut down hospitals, stores
and businesses for extended periods. Such events are becoming
increasingly frequent in many geographic regions (e.g., across the
Atlantic and Gulf of Mexico coast). Recent hurricanes in Florida
such as Hermine, Irma and Michael have exposed weaknesses in
how well prepared a city is to operate and respond during and fol-
lowing catastrophic storms. Fallen trees caused long term electricity
outages, road closures, service disruptions and loss of lives. In 2018,
the power outage in Tallahassee (FL, USA) caused by broken power
lines during Hurricane Michael affected 97% of the city’s electric
utility customers [11]. In Puerto Rico, a "single" fallen tree cut the
main power-line and led to a power blackout for 900,000 customers
as well as social outrage [3].

Trees near power lines have also caused many devastating wild
fires in recent years. In California, the inability of effectively lo-
cating and trimming trees caused a series of deadly fires in 2018,
including the Camp Fire, the deadliest wild fire in California his-
tory. The fires killed many people and destroyed over 10,000 built
structures (e.g., homes) worth billions of dollars [6]. Smoke and
unhealthy air that spread to cover over 20 cities caused schools to
close for a week and severely hampered people’s daily activities.

1.1.2 Resilience of Green Infrastructure. While trees growing in
undesired locations (e.g., near power lines) can pose severe threats,
in general they are necessary and invaluable components of our
living areas. Trees purify the air, reduce urban heat island effects,
create an aesthetically beautiful environment and promote mental
health. However, many communities are facing a drastic loss of
trees due to the global-spread of pests and disease (e.g., emerald ash
borer, pine beetle, dutch elm disease, oak wilt). For example, the
emerald ash borer, an invasive insect species, has expanded to 35
US states and killed millions of ash trees [2]. This can lead to severe
environmental problems since ash trees cover 20-30% of treescapes
in the majority of urban areas across the US. The cost of locating,
treating or removing these ash trees has been estimated to be over
10 billion US dollars in the US alone. Another study found that the
tree cover in US has declined in metropolitan areas across 45 states,
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resulting in an annual net loss of 36 million trees [8]. The same
problem also exists in many other geographic areas. For example,
ash trees in Europe are also facing extinction [4].

1.2 Vision
For resilient and sustainable communities, we envision the use of
innovative spatial techniques to map the locations, characteristics
and conditions of individual trees, and link this information to
the locations of street and power line infrastructure to improve
resilience to severe weather events in cities.

Currently, tree inventories only exist in very limited size and in
very few geographic regions, because manual collection of infor-
mation about individual trees is extraordinarily time-consuming
and difficult (e.g., blocked GPS signal under tree canopies, hard-
to-measure canopy sizes, requiring expert knowledge to know the
conditions or species).

Even utility companies, who regularly deal with vegetation man-
agement, still rely on human workers in vehicles and helicopters
to check tree conditions with their eyes, a hit or miss solution that
is both time-consuming and expensive. Additionally, the alarms
raised by recent extreme weather events (e.g., storm, drought) and
tree-related disasters (e.g., blackouts, fires) have prompted revisions
in tree management regulations in many states for more aggres-
sive and robust tree-trimming. While utilities already spend huge
amounts of money every year on trimming tree branches and re-
moving dead trees away from power lines, this makes it an even
bigger issue. With the current technology, it has been estimated that
even a slight change in tree-trimming regulations could easily cost
a single utility hundreds of million dollars in extra per year. For ex-
ample, utilities companies in Missouri estimated that tree trimming
cost about 300 million dollars every year to meet the state’s new
vegetation management regulations [12]. Another study found that
non-timely tree trimming can further increase costs by 20% to 70%
[5]. In 2018, PG&E, the largest utility company in California, was
forced to file for bankruptcy due to the loss of lives and property
damage in the billions associated with the forest fires started by
trees near its power lines [6].

Innovations and advancements in spatial techniques (e.g., remote
sensing, spatial data mining and machine learning) are necessary
to address these urgent problems faced by communities. In the
rest of the paper, we will detail the challenges and opportunities
around three research areas that are needed to achieve our vision:
(1) geometric profiling of individual trees, (2) determining species of
individual trees, and (3) decision making and in-field management.

2 CHALLENGES AND OPPORTUNITIES
In order to generate informative inventories of individual trees
to support decision-making and in-field intervention, we split the
task into three research areas in a sequential order in Sec. 2.1 to
2.3. For each research area, we discuss existing techniques, identify
research gaps and envision new opportunities.

2.1 Geometric Profiling of Individual Trees
First, we need to be able to detect the spatial locations of individual
trees and their geometric characteristics, including heights, canopy
sizes, shapes, etc. To achieve tree detection at a real-world large
scales (e.g., city or state level), remote sensing data are typically

required. There are two types of remote sensing data related to
individual tree detection: satellite / aerial imagery and topographic
models (e.g., digital surface models, LiDAR point cloud). The main
difference between the two is that satellite / aerial imagery records
the spectral value (e.g., intensity of a color channel) of each location
whereas topographic models record the canopy height (e.g., height
of a building roof or a tree canopy). Fig. 1 (a) and (b) show examples
of the two data types for the same geographic region.

Figure 1: Remote sensing data for tree detection [15].

Compared to imagery, topographic models have two major ad-
vantages: (1) Tree boundaries are easier to separate using geometric
characteristics (i.e., change of heights). This can be very difficult
with imagery where nested groups of trees often share very similar
spectral information (e.g., colors), making their boundaries hard
to recognize; (2) Tree features are more stable and homogeneous
in topographic models since they are not affected by changes in
brightness, radiation, camera angles, etc. As a result, most existing
work is based on topographical models and applies geometric seg-
mentation methods (e.g., watershed segmentation) to split groups
of trees into individual trees (e.g., [7]). However, these methods
are mostly designed for forest regions where the landscapes are
assumed to be homogeneous of trees only, and cannot be applied
in urban areas where the environment is a complex mixture of
different types of objects. In addition, these unsupervised segmen-
tation methods often generate fixed partitions that tend to favor
local minima and split a single tree into multiple pieces [15]. Deep
learning methods have achieved promising success in everyday
object detection (e.g., YOLO [9], SSD, r-CNN), but they require a
huge amount of training data (i.e., manually annotated tree objects)
which is not available in vast majority of the geographic areas. In
addition, our previous study [15] showed that deep learning based
object detectors still have difficulty in separating out individual
trees even with reasonable training data in a local area.

To address these limitations, our earlier work [15] proposed a
TIMBER framework to detect individual trees in both urban and
forest environments using a combination of geometric optimization
(unsupervised) and a deep learning based filter (supervised). The
geometric optimization phase uses "dome-shaped" mathematical
approximators (e.g., Gaussian) to approximate the real geometric
shapes of trees in topographic models. The decision variables in the
optimization formulation are the locations, heights and sizes of tree-
like structures. Since tree surfaces are not smooth and contain many
dome-shaped local bumps, we designed specific regularizers to
avoid such noise in the result. The output of geometric optimization
contains locations, heights and sizes of all tree-like structures (i.e.,
dome-shaped trees and non-trees). To remove non-tree structures,
we constructed a convolutional neural network based filter, which
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learns and predicts a binary class label (i.e., tree and non-tree) for
each tree-like structure. The deep learning filter is only used as a
classifier, not a direct object detector, which avoids the difficulty of
boundary separation. Fig. 1 (c) shows an example result of TIMBER.

While TIMBER was able to greatly improve tree detection perfor-
mance on topographic models, two main challenges and opportuni-
ties need to be further explored for tree management applications.

First, compared to satellite / aerial imagery, current topographic
models have a relatively long update period (e.g., five years). This
is not timely for tree inspection and management which needs to
be done at least once a year. We envision a heterogeneous-source
based incremental-update framework to address this challenge. The
framework has two phases: (1) a base phase: tree detection using
TIMBER on topographic models; and (2) an update phase: incremen-
tally modify and update detection results by tracking local changes
in satellite / aerial imagery. The framework can potentially take
advantage of both types of data, where the topographic models
contain stable geometric features and the imagery has a higher fre-
quency of update (e.g., monthly). In addition, tracking local changes
(e.g., tree growth or removal) in the imagery for each detected indi-
vidual tree is potentially a much easier task than directly detecting
and separating nested trees in the imagery.

Second, the current mathematical approximators (e.g., truncated
Gaussian with varying parameters) in TIMBER may not be suitable
for all tree species. Since TIMBER has only been tested inMinnesota,
it may not cover certain tree species (e.g., palm trees) or landscapes
(e.g., heavily overlapped tree-tops in tropical forests) that are spe-
cific to other geographic regions. Further tests and explorations
of new approximators are needed to improve its flexibility and
geographic robustness.

2.2 Determining Species of Individual Trees
Tree species provide meaningful information in tree management.
For example, for energy infrastructure security, tree properties (e.g.,
wind resistance) determined by species or genera are critical for
risk analysis (e.g., blackouts, fires) involving trees and power lines.

With detections of individual trees (Sec. 2.1), this step can focus
on feature identification / construction and species classification
for each individual tree. In general, tree species classification is con-
sidered one of the most challenging problems in remote sensing. In
satellite imagery with visual bands, trees of different species often
appear as very similar green blobs and have very little distinction
[14]. In related work, most promising results are achieved with
hyperspectral imagery. Compared to visual-band based satellite or
aerial imagery, hyperspectral imagery contains values for a signifi-
cantly greater number of spectral bands (e.g., hundreds). With such
rich information, a few studies have demonstrated the feasibility of
identifying distinctive signatures of several species. As the saying
goes, however, there is no free lunch. Hyperspectral imagery is very
expensive to capture at high resolution (e.g., meter or sub-meter
level) so it is still unavailable at large scales (e.g., city or state level)
in very most of the urban areas. The previous studies were mainly
performed in a few controlled local areas where the imagery was
specifically collected. Topographic models face a similar problem.
Since topographic models only have the height information and do
not contain the rich spectral details in hyperspectral imagery, their
spatial resolution has to be much higher (e.g., centimeter level) to

capture detailed structural differences between different species.
However, due to cost concerns, existing topographic models mostly
have their resolution at meter level, which is sufficient for individual
tree detection but not for species classification.

Currently, the only remote sensing data that have centimeter
level resolution and are collected regularly at large scales (e.g., city
scale or greater) is visual-band based aerial imagery. For example, a
large number of counties have aerial imagerywith 4-7 cm resolution
on an annual or sub-annual basis. These datasets are for general
purposes and are often collected during leaf-off season (e.g., winter,
spring) to reduce canopy coverage on the other objects. While the
absence of leaves makes it even more difficult to extract signatures
of different species directly from the tree canopies, our preliminary
study takes advantage of this and identifies a side-feature – tree
shadow – that shows encouraging results on species and genus
classification. Fig. 2(a) shows a typical example of aerial imagery.
With leaf-off, we can see the detailed branch structures of trees
through their shadows. In fact, even with leaf-on the tree profile
structures from the shadows often contain more unique charac-
teristics than the canopies from top-down views. Fig. 2(b) shows
examples of shadows from different species of trees, which were
clipped from aerial imagery. As we can see, different species do
exhibit different shadow signatures. This new finding opens up new
opportunities in tree species and genus classification at real-world
large scales. Fig. 2(c) shows the preliminary classification results.
The training set (about 2000 samples) and test areas contain 24
different classes. The green boxes show the test samples (a subset of
trees in an area that was not used in training) that have the correct
tree label in the top 3 predictions of the convolution neural network
and red boxes not. Note that this is a very preliminary result and is
just used to demonstrate the potential feasibility of this envisioned
methodology (not matured work).

Figure 2: Opportunity: species classification using shadows.

A major challenge in this method is generating the training data.
While it is relatively easy to generate the bounding boxes of shad-
ows using the geometric properties of individual trees (Sec. 2.1) and
sun angle information from the imagery, it is challenging to label
the species or genera. Citizen science platforms (e.g., Zooniverse,
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Amazon Mechanical Turk) provide a potential solution. However,
unlike everyday objects, expert knowledge on trees is required to
recognize their species or genera, which may not be a trivial task.
To address this issue, future work may borrow experience from
other domains (e.g., Galaxy Zoo) which have pre-training schemes
to assist participants with manual classification.

Another challenge is the overlaps between shadows and other
objects (e.g., buildings) as well as the shadows themselves. We can
often solve shadow-object overlaps using multiple aerial images
taken at different hours (e.g., morning, afternoon) so that shadows
cast onto buildings (i.e., blurry) in onemay be on streets (i.e., clearer)
in another. Shadow-shadow overlaps may require more sophisti-
cated methods to handle. One potential solution might be to add
combined labels (e.g., "ash and elm") to overlapped regions and post-
processing steps to separate the predictions into individual species
or genera. Capsule networks [10], a type of convolutional neural
network that was designed for segmenting overlapping objects (e.g.,
digits), can also be explored to tackle this issue.

Certain geographic regions can also be more challenging for
shadow-based species classifiers. For example, trees in regions with
a tropical climate can be ever-green, making it more difficult to see
the differences in branch structures of trees in their shadows. Thus,
we also envision other research directions which may be more suit-
able for those regions. First, future research can take advantage of
tree phenology and explore new visual-band based features using
temporal or seasonal changes in tree characteristics. The idea is
that trees of different species may change color, flower or wither at
different time. This temporal variation may lead to visibly distinct
signatures of different species in aerial imagery. Second, we can
reduce the difficulty of the problem based on specific application
needs. For example, if we are mainly interested in finding species
of low-wind resistance, we may simplify the problem by group-
ing the species or genus into a much smaller number of classes.
Other properties (e.g., branch thickness, tree age) may also be good
indicators of wind resistance.

2.3 Decision Making and In-field Management
With a map of individual trees and their properties, another chal-
lenge and opportunity is to assist the decision making process and
in-field interventions. For decision making, an important first step
is data integration (e.g., tree databases and power line databases).
New conceptual and logical data models, SQL clauses and predi-
cates may be needed to support efficient querying in an integrated
database. We can also leverage spatial data mining techniques to
facilitate risk analysis and management plan optimization. For ex-
ample, spatial buffer or hotspot analysis can help identify risky
spots where trees may fall onto power lines in storms. Spatial pre-
dictive models can then be used to better quantify the risk using
the strength of a storm and use optimization methods to prioritize
tree trimming zones under a budget limit. We also need new spatial
data mining techniques to incorporate uncertainty or statistical
measures to model the errors from tree detection and classification
phases (e.g., data aging, detection inaccuracy).

Assistance to in-field interventions may leverage recent advance-
ments in robotics. In recent years, specialized drone assistants have
been developed for forest fire containment [13], in-field sensor
deployment, etc. For example, drones can easily carry sensors to

regions that are difficult and time-consuming to reach by humans
(e.g., forested areas) and install them at the desired locations effi-
ciently. Future specialized drones may carry trimming tools to cut
smaller branches of trees near power lines or put a clear mark on
those trees so that in-field workers can easily identify trees that
need trimming.

3 CONCLUSIONS
We propose a vision for the next generation of tree management
using innovative spatial techniques. Smart tree management is
both important and urgent due to the tree-related problems (e.g.,
historical fires, blackouts, loss of green areas) that have increased
in frequency, scale and severity. This vision cannot be fully real-
ized without significant advancements in individual tree detection
and characterization using heterogeneous sources of spatial data.
We encourage the spatial community to explore these challenges
and opportunities and revolutionize tree management to improve
sustainability, safety and well-being.
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